‘The role of symbolic knowledge at the dawn of AGI’ with Dave Raggett

We are pleased to have Dave Raggett, join us for this ART-AI seminar entitled ‘The role of symbolic knowledge at the dawn of AGI’.

ART-AI Seminar

We are pleased to have Dave Raggett, join us for this ART-AI seminar entitled ‘The role of symbolic knowledge at the dawn of AGI’ (Artificial General Intelligence) at the University of Bath, 6W 1.1, on Tuesday 10th October 2023, 12.15pm-13.15pm (BST). Marina De Vos will chair. If you are unable to make this event in-person, there is an option to dial in via Microsoft Teams. For more information, please e-mail [email protected].

Title:

The role of symbolic knowledge at the dawn of AGI

Abstract:

Large language models and generative AI have shown amazing capabilities. We tend to see them as much more intelligent than they actually are. It is time to embrace the many research challenges ahead before we can truly realise AGI. Work in the cognitive sciences can help us to better mimic human cognition, and to understand how to address generative AI failures such as factual errors, logical errors, inconsistencies, limited reasoning, toxicity, and fluent hallucinations. How can we architect systems that continuously learn from limited data like we do, combining observations and direct experience along with autonomous, algorithmic and reflective cognition?

If machine learning is so effective for neural networks, where does that leave symbolic AI? My conjecture is that symbolic AI has a strong future as the basis for semantic interoperability between systems, along with knowledge graphs as an evolutionary replacement for today’s relational databases. We, do however, need to recognise that human interactions and our understanding of the world is replete with uncertainty, imprecision, incompleteness and inconsistency. Logicians have largely turned a blind eye to the challenges of imperfect knowledge.

This is despite a long tradition of work on argumentation, stretching all the way back to Ancient Greece. This tradition underpins courtroom proceedings, ethical guidelines, political discussion and everyday arguments. I will introduce the plausible knowledge notation as a way to address plausible inference of properties and relationships, fuzzy scalars and quantifiers, along with analogical reasoning. Work on symbolic AI can help guide research on neural networks, and vice versa, neural networks can assist human researchers, speeding the development of new insights.

Bio:

Dr. Dave Raggett is a web pioneer with a life long interest in AI, gaining experience at the University of Oxford, the Machine Intelligence Research Unit at the University of Edinburgh, the Logic Programming Department at Imperial College, the Computer Science and AI Lab at MIT and many years at HP Lab’s knowledge based programming department. He is now a member of W3C/ERCIM and involved in a succession of European projects. He founded W3C’s Cognitive AI Community Group and is driving ongoing work on human-like AI. He holds an honorary professorship from the University of the West of England.


Event Info

Date 10.10.2023
Start Time 12:15pm
End Time 1:15pm

Add to Google Calendar